Presentation Outline

- Drought Contingency Planning Overview
- The Colorado River Basin and Wyoming Water Uses
- Primary “Law of the River” Elements
- Current Conditions
- Drought Contingency Plans
 - The Upper Basin Plan
 - The Lower Basin Plan
- Current Timeline
Drought Contingency Planning – Overview

- Over the past decade, drought in the Colorado River Basin has increased the risk of reservoirs declining to critically low elevations by nearly four-fold.

- Current operational rules on the Colorado River are insufficient to protect against reservoirs declining to critically low elevations if dry conditions persist or worsen.

- Beginning in 2013, in response to these historic drought conditions, the seven Colorado River Basin States, the Department of Interior and the Republic of Mexico have been working on Drought Contingency Plans (DCPs).

- Urgency has increased due to this year’s very poor hydrology.
Drought Contingency Planning – Overview

- The draft DCP Agreements include an Upper Basin DCP and a Lower Basin DCP.
 - Modeling studies of the DCPs indicate that, when implemented together with Mexico’s agreed upon plan, the risk of reaching critical elevations in Lakes Powell and Mead through 2026 is significantly reduced (Averaging 5% or less).

- The Upper Basin DCP is designed to:
 1. Protect critical elevations at Lake Powell and help assure continued compliance with the 1922 Colorado River Compact; and
 2. Authorize storage of conserved water in the Upper Basin that could help establish the foundation for a Demand Management Program that may be developed in the future.
Drought Contingency Planning – Overview

- The Upper Basin DCP consists of two draft agreements: The Drought Response Operations Agreement and the Demand Management Storage Agreement.

- The Drought Response Operations Agreement:
 - Conserves water in Lake Powell through operational adjustments or by moving available water from upper CRSP facilities (Aspinall, Flaming Gorge, Navajo).
 - Does not provide for the operation of any reservoir outside of existing authorities.
 - Requires recovery of storage as part of any Drought Response Operations plan.

- The Demand Management Storage Agreement:
 - Authorizes storage in federal reservoirs to be used by the Upper Division States, at no cost, to hold conserved consumptive use for compact compliance.
 - Sets the stage for a future demand management program if stood up by the UCRC and the Upper Division states.
 - **Does not establish a Demand Management Program:** That will require answering numerous technical and policy questions in the future with multiple stakeholders (agriculture, industry, municipal, environmental, recreation) at the table during development.
Lower Basin DCP is designed to:
1. Require Arizona, California and Nevada to contribute additional water to Lake Mead storage at predetermined elevations; and
2. Create new flexibility to incentivize additional voluntary conservation of water to be stored in Lake Mead

The Lower Basin DCP:
- Includes participation by California even though it doesn’t share in current shortages.
- If executed, triggers additional contributions already agreed to by Mexico.
- Also benefits reservoir elevations in Lake Powell.
Colorado River Basin and Wyoming Water Uses
Colorado River System:

- CO River Basin drains nearly 250,000 Square Miles.
- Provides water to seven U.S. States and two Mexican States.
- Supplies water to 40 million people and 5.5 million acres of irrigated lands.
- Served area has economic value of approx. $1.4 trillion annually.
- Capacity to store four years of average annual flow.
Colorado River Basin Includes areas outside of the Basin beneficially served by System water.

Cheyenne: Approx. 8,000 acre feet per year.
In Wyoming, the Colorado River Basin covers about 17,000 square miles, including the areas drained by the Little Snake and Green Rivers.
Wyoming CO River Water Uses

<table>
<thead>
<tr>
<th>Sector of Use</th>
<th>Average Consumptive Use (Acre-Feet/Year)</th>
<th>Sector Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td>463,691</td>
</tr>
<tr>
<td>Irrigation, Surface Water and Groundwater</td>
<td>456,836</td>
<td></td>
</tr>
<tr>
<td>Livestock, Surface Water and Groundwater</td>
<td>6,855</td>
<td></td>
</tr>
<tr>
<td>Municipal/Industrial</td>
<td></td>
<td>65,219</td>
</tr>
<tr>
<td>Urban, Surface Water</td>
<td>7,711</td>
<td></td>
</tr>
<tr>
<td>Urban, Groundwater</td>
<td>817</td>
<td></td>
</tr>
<tr>
<td>Rural, Surface Water</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rural, Groundwater</td>
<td>3,042</td>
<td></td>
</tr>
<tr>
<td>Thermal Electric Power, Surface Water</td>
<td>27,394</td>
<td></td>
</tr>
<tr>
<td>Thermal Electric Power, Groundwater</td>
<td>6,054</td>
<td></td>
</tr>
<tr>
<td>Mineral Resources, Surface Water</td>
<td>18,248</td>
<td></td>
</tr>
<tr>
<td>Mineral Resources, Groundwater</td>
<td>1,954</td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td></td>
<td>8,735</td>
</tr>
<tr>
<td>City of Cheyenne Diversions, Surface Water</td>
<td>8,056</td>
<td></td>
</tr>
<tr>
<td>Broadbent Supply, Surface Water</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>Reservoir Evaporation</td>
<td></td>
<td>27,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>564,645</td>
</tr>
</tbody>
</table>
Wyoming CO River Water Uses

<table>
<thead>
<tr>
<th>Year</th>
<th>Wyoming's GRB Consumptive Use (ac-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>654,402</td>
</tr>
<tr>
<td>2012</td>
<td>555,816</td>
</tr>
<tr>
<td>2013</td>
<td>505,508</td>
</tr>
<tr>
<td>2014</td>
<td>480,788</td>
</tr>
<tr>
<td>2015</td>
<td>517,466</td>
</tr>
<tr>
<td>2016</td>
<td>615,403</td>
</tr>
<tr>
<td>2017</td>
<td>623,135</td>
</tr>
<tr>
<td>Average</td>
<td>564,645</td>
</tr>
</tbody>
</table>

Note: The irrigation component of consumptive use was calculated based on Penman-Monteith with an alfalfa-based reference ET.
Primary “Law of the River” Elements
“Law of the River”

- **Law of the River: Some Primary Elements:**
 - Colorado River Compact, 1922
 - Boulder Canyon Project Act (1928)
 - Mexican Water Treaty, 1944
 - The Upper Colorado River Compact, 1948
 - Colorado River Storage Project Act (1956)
 - Arizona v. California (1963)
 - Colorado River Basin Project Act (1968)
 - Minute 323 to the Treaty with Mexico

- The Big Three
1922 Compact Apportions the River

[Map of the Colorado River Basin with labels for Upper Division States and Lower Division States, and specific locations like Lee Ferry]
1922 Compact Apportions the River

Annual apportionments to each Basin:
The Compact does not apportion water, it apportions the “exclusive beneficial consumptive use” of water.

Art. III (d) - Upper Division states shall not cause the flow at Lee Ferry to be depleted below an aggregate of 75,000,000 acre-feet for any period of ten consecutive years.

Upper Basin 7.5 MAF

Total Aggregate Apportionment: 16 MAF

Lower Basin 7.5 MAF

+ 1 MAF

8.5 MAF
Mainstream users in each Lower Basin State must have a direct contract with Reclamation, or receive water through a State agency which has a direct contract with Reclamation. The Secretary of the Interior is the water master. Lake Mead sits above most LB water users.
Treaty with Mexico, 1944

Upper Basin 7.5 MAF
Lower Basin 8.5 MAF
Mexico 1.5 MAF

Total Apportionments
U.S. and MX: 17.5 MAF
Upper Colorado River Basin
Compact of 1948

- Divides the Upper Basin’s allocation between Arizona, Colorado, Utah, New Mexico, and Wyoming.
 - Apportions the consumptive use of water.

- Establishes requirements for each Upper Division state with respect to the obligation not to deplete flows of water at Lee Ferry under Colorado River Compact.

- Makes provisions for possible curtailment of use of Colorado River water.
 - Prior perfected rights excluded.

- Establishes the *Upper Colorado River Commission*.
Upper Colorado River Commission

- One commissioner from each of the Upper Division states and one commissioner representing the US.

Commission Powers:
- Adopt rules and regulations
- Make findings as to:
 - “Extraordinary drought” in the Upper Basin
 - Upper Basin water use
 - Lee Ferry deliveries (if necessary)
 - Necessity for, extent and timing of curtailment if any is required.
 - Reservoir losses
- Engage in cooperative studies
- Collect and analyze river data

- UCRC does NOT have authority to determine how curtailment will be implemented within an individual state.
Article III(a) of the Upper Colorado River Basin Compact apportions to individual states the Upper Basin’s share of the beneficial consumptive use of water apportioned under the Colorado River Compact (7.5 MAF). Arizona gets 50,000 AF annually. The other states may consumptively use a set percentage of the remaining water available for use each year.

Upper Colorado River Basin Compact Apportionment of Full Supply (7.5 MAF) and of Available Consumptive Use Identified in 2007 Hydrologic Determination (at least 6.01 MAF)

<table>
<thead>
<tr>
<th>State</th>
<th>Percentage</th>
<th>Share of 7.5 MAF (full supply)</th>
<th>Share of 6.01 MAF (5.96 MAF after AZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado</td>
<td>51.75</td>
<td>3,858,000</td>
<td>2,834,000</td>
</tr>
<tr>
<td>New Mexico</td>
<td>11.25</td>
<td>838,000</td>
<td>679,400</td>
</tr>
<tr>
<td>Utah</td>
<td>23</td>
<td>1,713,500</td>
<td>1,370,800</td>
</tr>
<tr>
<td>Wyoming</td>
<td>14</td>
<td>1,043,000</td>
<td>834,400</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>7,450,000</td>
<td>5,960,000</td>
</tr>
</tbody>
</table>

Wyoming’s current estimated-average use: 546,000 acre feet.
Upper Basin Apportionment

Wyoming: 14%
- Full: 1,043,000
- 6.01: 834,400
- Current: 546,000

Colorado: 51.75%
- Full: 3,855,375
- 6.01: 3,084,300
- Current: 2,595,000

Utah: 23%
- Full: 1,713,500
- 6.01: 1,370,800
- Current: 865,000

New Mexico: 11.25%
- Full: 838,125
- 6.01: 670,500
- Current: 530,000

Arizona
- 50,000 AF

Total UB
- Full: 7.5 MAF
- Current: 5,056,000
(includes 520,000 AF CRSP evaporation)

Current use based upon the December 31, 2016, Current and Future Depletion Demand Schedule.
Lower Basin Apportionment

1922 Compact; Boulder Canyon Project Act (1928); AZ V. CA Decree, 1964.

- Nevada
 - Mainstream 300,000
 - (2017: 243,425)

- Arizona
 - Mainstream 2,800,000
 - (2017: 2,509,503)

- California
 - Mainstream 4,400,000
 - (2017: 4,026,515)

- Total LB Mainstream Apportionment: 7.5 MAF
Structural Deficit

Water Budget at Lake Mead

- Inflow (release from Powell + side inflows) = 9.0 maf
- Outflow (AZ, CA, NV, and Mexico delivery + downstream regulation and gains/losses) = -9.6 maf
- Mead evaporation losses = -0.6 maf
- Balance = -1.2 maf

Given basic apportionments in the Lower Basin, the allotment to Mexico, and an 8.23 maf release from Lake Powell, Lake Mead storage declines about 12 feet each year.
2007 Interim Guidelines
Coordinated Operations

Lake Mead

Lake Powell
2007 Interim Guidelines: Coordinated Reservoir Operations
Lake Powell and Lake Mead

Lake Powell Operational Tiers

<table>
<thead>
<tr>
<th>Lake Powell Elevation (feet)</th>
<th>Lake Powell Operational Tier</th>
<th>Lake Powell Active Storage (ma³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,700</td>
<td>Equalize</td>
<td>24.32</td>
</tr>
<tr>
<td>3,836 – 3,886</td>
<td></td>
<td>15.54 – 19.29</td>
</tr>
<tr>
<td>3,575</td>
<td>Upper Elevation Balancing Tier release 8.23 ma³; if Lake Mead < 1,075 feet, balance contents with a min/max release of 7.0 and 9.0 ma³</td>
<td>(2008 – 2026) 9.52</td>
</tr>
<tr>
<td>3,525</td>
<td>Mid Elevation Release Tier release 7.48 ma³; if Lake Mead < 1,075 feet, release 8.23 ma³</td>
<td>7.48 or 8.23 if Mead low 5.93</td>
</tr>
<tr>
<td>3,370</td>
<td>Lower Elevation Balancing Tier balance contents with a min/max release of 7.0 and 9.5 ma³</td>
<td>Balance 0</td>
</tr>
</tbody>
</table>

Lake Powell Equalization Elevation Table

<table>
<thead>
<tr>
<th>Water Year</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>3,636</td>
</tr>
<tr>
<td>2009</td>
<td>3,639</td>
</tr>
<tr>
<td>2010</td>
<td>3,642</td>
</tr>
<tr>
<td>2011</td>
<td>3,643</td>
</tr>
<tr>
<td>2012</td>
<td>3,645</td>
</tr>
<tr>
<td>2013</td>
<td>3,646</td>
</tr>
<tr>
<td>2014</td>
<td>3,648</td>
</tr>
<tr>
<td>2015</td>
<td>3,649</td>
</tr>
<tr>
<td>2016</td>
<td>3,651</td>
</tr>
<tr>
<td>2017</td>
<td>3,652</td>
</tr>
<tr>
<td>2018</td>
<td>3,654</td>
</tr>
<tr>
<td>2019</td>
<td>3,655</td>
</tr>
<tr>
<td>2020</td>
<td>3,657</td>
</tr>
<tr>
<td>2021</td>
<td>3,659</td>
</tr>
<tr>
<td>2022</td>
<td>3,660</td>
</tr>
<tr>
<td>2023</td>
<td>3,662</td>
</tr>
<tr>
<td>2024</td>
<td>3,663</td>
</tr>
<tr>
<td>2025</td>
<td>3,664</td>
</tr>
<tr>
<td>2026</td>
<td>3,666</td>
</tr>
</tbody>
</table>

Lake Powell current elevation is 3,592 ft.
2007 Interim Guidelines

Lower Basin Shortages and Intentionally Created Surplus

- **Shortages in the Lower Basin:** Insufficient mainstream water to satisfy 7.5 MAF LB use.
 - Based upon Lake Mead elevations: 1,075’, 1,050’, and 1,025’. The lower the elevation, the greater the shortage.
 - Only Arizona (up to 480kaf) and Nevada (up to 20kaf) take shortages. California does not take shortages. Mexico has also agreed to take proportional shortages (Minutes 319 & 323).

- **Intentionally Created Surplus (ICS)**
 - Allows LB users to invest in conservation or augmentation and to bank that water in Lake Mead for later use without other LB users claiming the water.
 - Provides incentive to conserve water because it can be stored; increases flexibility. Intended to promote higher reservoir elevations and avoid shortages.
 - Most common form is Extraordinary Conservation ICS (EC ICS). Includes projects such as fallowing of land that was historically irrigated and canal lining.
 - Subject to creation, total storage, and delivery limitations.
Current Conditions
Lake Powell Unregulated Inflow
Water Year 2019 Forecast *(issued September 1)*
Comparison with History

Water Year 2019 Forecast
- Sep Most Prob: 7.90 maf (73%)
- Aug Min Prob: 4.80 maf (44%)
- Aug Max Prob: 15.60 maf (144%)
- Average: 10.83 maf (1981-2010)

August 2018 only 2% of Average.
September 2018 was less than 1%

Observed Apr-July: 2.60 (36%)
Projected WY 2018: 4.76 (44%)
Lake Powell & Mead Storage and Percent Capacity & Unregulated Inflow into Lake Powell

1Values for Water Year 2018 are projected. Unregulated Inflow is based on the latest CBRFC forecast dated September 17, 2018. Storage and percent capacity are based on the September 2018 24-Month Study.

2Percentages on the light blue line represent percent of average unregulated inflow into Lake Powell for a given water year. The percent of average is based on the period of record from 1981-2010.
Lake Powell and Lake Mead Operational Diagrams (According to the 2007 Interim Guidelines)

Total Capacity = 50.4 MAF

Current Storage = 21 MAF or 42%

1 Whenever Lake Mead is below elevation 1,025 feet, the Secretary shall consider whether hydrologic conditions together with anticipated deliveries to the Lower Division States and Mexico is likely to cause the elevation at Lake Mead to fall below 1,000 feet. Such consideration, in consultation with the Basin States, may result in the undertaking of further measures, consistent with applicable Federal law.
Lake Powell Minimum Power Pool

- Elevation ~3,490 feet at Lake Powell, but negative impacts to power generation occur at higher elevations.
- Increased risk of not meeting Compact obligations. Only 4 MAF In Lake Powell at elevation 3,490’. Could we even get enough water out?
- Loss of power generation impacts:
 - Lose large clean power supply/soft start capability for western grid.
 - Lose funds for:
 - Repaying for construction of projects.
 - Operating and maintaining Glen Canyon, Aspinall, Flaming Gorge, Navajo, etc. reservoirs.
 - Implementing compliance with Endangered Species Act, NEPA, and Grand Canyon protection legislation.
 - Salinity mitigation.
 - Basin Fund MOA: Projects within each UB State.
Begins with forecasted Jan. 2019 elevation at Lake Powell: About 45% full

Three recent droughts superimposed on Jan. 2019 conditions (drawdowns based on historical record)

No Drought Contingency Plans in place

3490' is the minimum power pool elevation: Impacts to power generation occur at higher elevations.
Drought Contingency Plans (DCPs)
Risk of Lake Powell < 3,490’

Full Hydrology (1906-2015)
- 2007 Projections (1906-2005 hydrology)
- No DCP (August 2018 Projections)
- With DCP (August 2018 Projections with Upper & Lower Basin DCPs & Binational WSCP)

Stress Test Hydrology (1988-2015)
- 2007 Projections (1906-2005 hydrology)
- No DCP (August 2018 Projections)
- With DCP (August 2018 Projections with Upper & Lower Basin DCPs & Binational WSCP)
Risk of Lake Mead < 1,020’

Full Hydrology (1906-2015)

- **2007 Projections**
 - (1906-2005 hydrology)
- **No DCP**
 - (August 2018 Projections)
- **With DCP**
 - (August 2018 Projections with Upper & Lower Basin DCPs & Binational WSCP)

Stress Test Hydrology (1988-2015)

- **2007 Projections**
 - (1905-2005 hydrology)
- **No DCP**
 - (August 2018 Projections)
- **With DCP**
 - (August 2018 Projections with Upper & Lower Basin DCPs & Binational WSCP)
Upper Basin Drought Contingency Planning

Why are we doing it?

- If critical elevations are breached, the system faces threats to the ability to control its own destiny - Compact compliance, irrigation, drinking water supply, power production, environmental resource preservation, and overall sustainability.
- The alternative to agreed upon plans in the Upper Basin is mandatory curtailment to meet compact obligations.

Low probability but High Risk.

- Sensible to plan for the worst case scenarios to avoid potential controversy, conflict, litigation and uncertainty both within the Upper Basin and between Basins.
- Preparation for but not predicting need for implementation.
*Activates Section IV of Minute 323 (Binational Water Scarcity Plan)
Agree on a process to develop operational plans to implement under *emergency drought conditions only* to maintain minimum power pool elevation at Lake Powell.

By conserving water (temporarily) in Lake Powell or moving water available (and subsequently recovering the storage) from upper CRSP facilities.
Drought Response Operations Agreement

- Establishes a process for the Upper Division States and Secretary to rely on available water supplies from the CRSPA Initial Units as needed to reduce the risk of Lake Powell dropping below elevation 3,525’.
 - 3,525’ target elevation to help assure protection of Lake Powell’s minimum power pool and infrastructure (somewhere between 3,490’ and 3,525’).

- The Agreement guarantees the States a role in how the decision is made. Reclamation has the authority to move the water anyway.

- Provides for consultation with the Lower Division States during the development and implementation of a drought response operations plan.
Example of principles to be considered during plan development include:

- Operate Units with maximum flexibility practicable to accomplish drought response releases and subsequent recovery of storage operations.
- Ensure all CRSPA Initial Units are considered given water availability, hydrology, resource conditions, and operational limitations.
- Remain consistent with existing authorities, and honor water and hydropower contracts.
- Recovery of storage is part of drought response plan.
- Consider natural resource conditions and impacts to Basin Fund and Bulk Electric System.
- Providing for emergency actions if need to protect target elevation is imminent.
Process summary for developing Plan:

- Start planning process when the **Minimum** probable forecast projects Lake Powell elevations may reach elevation 3,525’ or below.
 - Monthly calls/meetings initiated to track conditions and status at Units.
- Develop draft operations plan when **Most** probable forecast projects Lake Powell elevations will reach elevation 3,525’ or below.
 - Provide for timely adjustments based on actual monthly hydrology.
 - Requires subsequent recovery of storage.
- Conduct outreach with stakeholders on terms of draft operations plan.
 - Provide terms to Lower Division States for review.
 - Obtain UCRC approval and submit to Secretary for approval.
Upper Basin Demand Management

- Be proactive in addressing variable hydrologic conditions in the basin.
- Assess methods to protect Wyoming water users from “hard” regulation in times of severe drought or basin curtailment. Temporary, voluntary and compensated conservation.
- Help assure full compliance with the Colorado River Compact without impairing existing water rights. Protect against Lake Powell reaching critical elevations.
- The UCRC has facilitated the System Conservation Pilot Program in the Upper Basin to inform the demand management element of its drought contingency plan. (2015-2018)
Upper Basin Demand Management

- Lots of issues exist – Consistency with water law, protecting existing water rights, achieving the goal, accounting, management and administration, interest, shepherding, funding, economic and environmental. All need to be investigated before determining if demand management is feasible.

- Investigation and development of a Demand Management Program will require answering these numerous technical and policy questions in the future with multiple stakeholders (agriculture, industry, municipal, environmental, recreation) at the table during development.

- June 20, 2018 UCRC Resolution: Commission resolved to work with interested entities and parties to explore and investigate outstanding considerations related to demand management.
Demand Management Storage Agreement

- Authorizes storage of water conserved under an Upper Basin Demand Management program in the CRSP Initial Units, without charge, for the purpose of helping to assure continued compliance with the Colorado River Compact.
 - This authorization does not expire.

- It does not establish an Upper Basin Demand Management Program.
 - By securing the storage authorization, the UCRC can effectively consider the feasibility of a demand management program.
 - The Agreement sets forth the minimum framework under which the Upper Division States can access the authorized storage prior to 2026.

- If, after study, the UCRC determines that a Demand Management Program is feasible then it may develop and implement a program.

- Program can only be implemented if approved independently by each of the Upper Division States.
Demand Management Storage Agreement

- Demand Management water stored prior to 2026 if a program is developed:
 - Upon verification of the conservation and conveyance to the reservoir, will not be subject to release from Lake Powell through 2057 except upon the request of the UCRC for compact compliance purposes;
 - Cannot cause a different release than would otherwise occur under operational rules;
 - The water would have been consumptively used but for conservation as part of a demand management program—not unused apportionment;
 - Maximum combined storage limitation of 500,000 acre feet;
 - Subject to proportionate share of evaporation;
 - Reduced by physical spill from Glen Canyon Dam; and
 - Subject to annual verification and reporting.

- After 2026, any demand management storage program would be informed by and considered as part of the renegotiation of the 2007 Interim Guidelines (set to begin in 2020).
Lower Basin DCP

- Requires Arizona, Nevada and California to contribute water (DCP contributions) to Lake Mead in addition to shortages required by the 2007 Interim Guidelines (a total of 1.1 maf).
 - Includes a commitment by the U.S. to work to create or conserve 100,000 acre feet of Colorado River system water.
 - Includes voluntary reductions from California which otherwise does not take mandatory shortages.

- Increased flexibility permits recovery of additional conservation volumes under certain conditions.
 - Incentivizes additional voluntary conservation: ICS creation/storage. This is conservation in addition to DCP contributions.
 - DCP contributions converted to ICS may only be delivered when Lake Mead is at or above elevation 1,110', though there are provisions for short-term “borrowing” of DCP ICS.
Contributions at higher elevations than 07 Guidelines shortages.

California provides contributions even though it doesn’t take shortages.

Total volume of shortages and contributions at lower elevations: 1,375,000 acre feet.
Agreement that ties the Upper and Lower Basin DCPs together. Includes provisions regarding:
- Seven state support for each Basin’s plan
- Transparency and good faith
- Enforcement
- Modification
- Notice and consultation
- Reservation of rights
- Resolution of claims
- No precedent

The UB and LB DCP agreements will be attached and incorporated to the Companion Agreement.
The Basin States have collectively agreed to seek federal legislation authorizing and directing the Secretary to implement the proposed operations in the Upper and Lower Basin DCPs.

The anticipated legislation would direct the Secretary of the Interior to sign and implement the entire DCP package of agreements upon the approval and execution by all other parties.

It is anticipated that the States will propose very simple legislation through a seven state letter to the Congressional delegations of each State, with each of the draft documents attached, seeking the delegations’ active support for the federal legislation.
Anticipated Timeline

- **October**: Final working draft agreements are made available (Oct. 9). Each Basin State conducts outreach with water users and other stakeholders. Final drafting of Agreements.

- **November**: LB water users begin to seek approvals for committing to obligations in LB DCP. Intra-state agreements in the LB being completed. Department of the Interior conducts internal review. Seven State letter sent to congressional delegations with all final agreements and proposed legislation.

- **November - December**: Obtain federal legislation directing Secretary of the Interior to execute and implement the DCP agreements.

- **Beginning January 2019**: Obtain Arizona legislature approval of LB DCP allowing Arizona to sign.

- **Early 2019**: All parties execute all DCP agreements.
Thank you!

Questions?

Contact Info.:

Patrick Tyrrell
307-777-6150
patrick.tyrrell@wyo.gov

Steve Wolff
307-777-1942
steve.wolff@wyo.gov

Chris Brown
307-777-3406
chris.brown@wyo.gov